Via Electronic Filing

Honorable Kimberly D. Bose
Secretary
Federal Energy Regulatory Commission
888 First Street, NE
Washington DC 20426

October 15, 2013

Subject: Wells Hydroelectric Project No. 2149 - Spill Prevention Control and Countermeasure Plan (SPCC) – License Article 401

Dear Secretary:

Pursuant to Article 401 of the new license for the Wells Hydroelectric Project (Wells Project), the Public Utility District No. 1 of Douglas County (Douglas PUD) hereby submits for approval the attached Spill Prevention Control and Countermeasures Plan (SPCC).

Article 401 requires Douglas PUD to file an updated SPCC with the Federal Energy Regulatory Commission (FERC) within one year of license issuance and following both approval by the Washington State Department of Ecology (Ecology) and consultation with the parties to the Aquatic Settlement Agreement (ASA), the National Marine Fisheries Service (NMFS) and the Bureau of Indian Affairs (BIA). The final SPCC is attached as Exhibit A to this letter and was developed in consultation with the parties to the ASA including the United States Fish and Wildlife Service (USFWS), U.S. Bureau of Land Management (BLM), Washington State Department of Fish and Wildlife (WDFW), Ecology, the Confederated Tribes of the Colville Reservation (CCT) and the Confederated Tribes and the Bands of the Yakama Nation (YN). The BIA and the NMFS were also provided an opportunity to review and comment on the SPCC during the 30-day ASA comment period.

No comments were received on the updated SPCC. Ecology acknowledged that the SPCC was recently updated in 2010 and that the current plan was satisfactory with no further review or modifications necessary. Following Ecology’s determination, the SPCC was approved by the Aquatic Settlement Work Group at the October 9, 2013 meeting. The pre-filing consultation record supporting the approval of the SPCC is attached as Exhibit B.
If you have any questions related to the SPCC, please feel free to contact Lori Morris at (509) 881-2243 or lorim@dcpud.org.

Sincerely,

Shane Bickford
Supervisor of Natural Resources

Enclosure:
Exhibit A – Spill Prevention Control and Countermeasure Plan.
Exhibit B – Pre-filing consultation record for the Spill Prevention Control and Countermeasure Plan.

Copy: Charlie McKinney, Ecology
 Pat Irle, Ecology
 Wells HCP Coordinating Committee – Members List
 Wells Aquatic Settlement Work Group – Members List
 Lori Morris, Douglas PUD
 Andrew Gingerich, Douglas PUD
 Brad Hawkins, Douglas PUD
Exhibit A

Spill Prevention Control and Countermeasure Plan
PUBLIC UTILITY DISTRICT NO. 1 OF DOUGLAS COUNTY
WELLS HYDROELECTRIC PROJECT

SPILL PREVENTION CONTROL AND COUNTERMEASURE (SPCC) PLAN

Date of initial operations: September 1967
Plan first implemented: March 1975
Last scheduled amendment: December 2006
Plan last amended: October 2009 - Amended in conjunction with relicensing process for Wells Hydroelectric Project
Current Plan amended: August 2010 - General revisions
Next scheduled plan review: August 2015

The Project Superintendent is the designated person accountable for oil spill prevention at this facility.

MANAGEMENT APPROVAL

This SPCC Plan will be implemented as herein described and will be amended as necessary due to modifications and improvements at the facility.

Signature: [Signature]
Name: William C. Dobbins
Title: General Manager
Public Utility District No. 1
of Douglas County

CERTIFICATION

This SPCC Plan was prepared using sound engineering practices. I have examined the facility and this Plan and find this Plan conforms to the guidelines and provisions of 40 CFR 112 (2006).

Engineer: Rolf G. Wielick, PE
JACOBS

Signature: [Signature]
License No.: 28939 State: WA
Date: August 17, 2010
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1</td>
<td>Purpose</td>
<td>1</td>
</tr>
<tr>
<td>1.2</td>
<td>Policy</td>
<td>1</td>
</tr>
<tr>
<td>1.3</td>
<td>Description of Facility</td>
<td>1</td>
</tr>
<tr>
<td>1.4</td>
<td>Owner</td>
<td>1</td>
</tr>
<tr>
<td>1.5</td>
<td>Project Superintendent</td>
<td>1</td>
</tr>
<tr>
<td>1.6</td>
<td>Responsible Parties</td>
<td>1</td>
</tr>
<tr>
<td>1.7</td>
<td>Related Agencies</td>
<td>1</td>
</tr>
<tr>
<td>1.8</td>
<td>Environmental Services</td>
<td>1</td>
</tr>
</tbody>
</table>

2.0	FACILITY ANALYSIS	5
2.1	Physical Layout	5
2.2	Oil Spill History	5
2.3	Potential Spill Events	5
2.4	Inventory of Oil-Containing Equipment and Type of Oil	5
2.5	Oil Clean-up Materials and Systems	5
2.5.1	Oil Clean-up Materials	5
2.5.2	Systems	5
2.5.3	Cleanup Operations and Disposal Records	5
2.6	Spill Prevention, Containment, and Countermeasure	5
2.6.1	Equipment and Equipment Components	5
2.6.2	Storage Containers	5
2.6.3	Oil Delivery Trucks	5
2.6.4	Oil Transfer Procedures	5
2.7	Security	5

3.0	MAINTENANCE AND INSPECTION PROCEDURES	14
3.1	Inspections – Daily	14
3.2	Other Routine Inspections / Maintenance	14
3.3	Inspection Logs	14
3.4	Removal/Disposal Records	14

| 4.0 | TRAINING OF PERSONNEL | 16 |

5.0	OIL SPILL CONTINGENCY PLAN	17
5.1	Commitment to Contingency Plan	17
5.2	Need for Contingency Plan	17
5.3	Turbine Runner Hubs	17
5.4	Oil Delivery Truck	17
5.5	Contingency Procedures	17
5.6	Compatibility with State and Regional Plans	17

6.0	NOTIFICATION AND DOCUMENTATION REQUIREMENTS	19
6.1	In-House Notification	19
6.2	Immediate Reporting Requirements	19
6.3	Notification to Others	19
6.4	Documentation of Spill Event	19
TABLE OF CONTENTS

6.5 Oil Spill Report Requirements
6.6 SPCC Plan Locations

7.0 WASHINGTON STATE RULES, REGULATIONS AND GUIDELINES 22
 7.1 Washington State Laws
 7.2 Columbia & Snake River Spill Response Initiative
 7.3 Incident Command System

8.0 ATTACHMENT C-II OF 40 CFR 112—CERTIFICATION OF THE
APPLICABILITY OF THE SUBSTANTIAL HARM CRITERIA 24

LIST OF FIGURES
 1. Physical Layout – Wells Dam ... 4
 2. Drainage Schematic for Transformers on Deck 9

APPENDICES

APPENDIX A: SPCC NOTIFICATION CHART

APPENDIX B: HAZMAT SPILL CONTRACTOR LIST

APPENDIX C: REGIONAL TREATMENT CENTERS FOR PETROLEUM CONTAMINATED SOILS

APPENDIX D: NOTICE TO TANK TRUCK DRIVERS

APPENDIX E: SPCC RULE CROSS-REFERENCE

APPENDIX F: OIL SPILL MOBILE RESPONSE UNIT – INVENTORY
1.0 INTRODUCTION

This document is the Spill Prevention Control and Countermeasure (SPCC) Plan for the Wells Hydroelectric Project (Wells Project), owned by Public Utility District No. 1 of Douglas County, Washington (District). In accordance with regulations, this plan was initially implemented no later than the extension date of March 1975. It has been reviewed at 3-year intervals since that date and was reviewed and amended in March 2002. The Environmental Protection Agency (EPA) amended the 1973 Oil Pollution Prevention Regulations with revised rules that became effective August 16, 2002.

The 2002 rules require that an owner or operator review and evaluate his plan at least every 5 years. If the review identifies new field-proven technology that will significantly reduce the likelihood of harmful oil discharges from the facility, the plan must be amended within 6 months of the review. The plan must also be amended if there is a change in the facility design, construction, operation, or maintenance that materially affects its potential for the discharge of oil in quantities that may be harmful. Amendments must be implemented as soon as possible, but not later than 6 months following the preparation of any amendment.

In February 2006, EPA extended the dates by which facilities must prepare or amend SPPC Plans and implement those Plans. According to this extension rule, the Wells Project would have to make any necessary amendments to its SPCC Plan, and implement that Plan, on or before October 31, 2007.

In December 2006, EPA signed a final rule to amend the SPCC rule at 40 CFR Part 112. EPA amended the SPCC rule to address a number of issues raised by its 2002 final rule, including those pertaining to facilities with smaller oil storage capacities, qualified oil-filled operational equipment, and mobile refuelers. The plan was reviewed and amended in October 2007 to ensure conformance with the requirement of the 2006 regulations.

In November 2008, Washington State Department of Ecology (Ecology) provided comments on the 2007 Update of the SPCC Plan in conjunction with the District’s efforts to relicense the Wells Project.

This plan has been reviewed and amended to ensure conformance with Washington State Laws and Ecology requirements relating to the 401 Water Quality Certification and the District’s Water Quality Management Plan (WQMP). The next scheduled review of the SPCC Plan for the Wells Project will be before August 2015.

1.1 PURPOSE

The Purpose of this plan is to meet the requirements of the U.S. Environmental Protection Agency Regulations, as defined in Title 40 Code of Federal Regulations, Part 112 (as amended in December 2006), and entitled "Oil Pollution Prevention." Appendix D contains a SPCC Rule Cross-Reference that lists the page(s) of this plan that meet the requirements. Additionally this plan meets the requirements of the Revised Code of Washington (RCW) Chapters 90.56 and 90.48 (see Section 7.0).

The Spill Prevention Control and Countermeasure (SPCC) Plan contained herein is a comprehensive statement by facility management and is intended to be supported by the facility's Oil Spill Contingency Plan. The SPCC Plan along with the Oil Spill Contingency Plan establishes procedure, methods, equipment, and materials that shall be used to prevent, contain, and/or clean up an oil spill, thereby preventing it from impacting the navigable waters of the United States.
1.2 POLICY

It shall be the policy of Public Utility District No. 1 of Douglas County and all its contractors to recognize that oil contamination of the waters of the State of Washington is harmful to public health, welfare, and the environment. Therefore, it is required that the strongest emphasis be placed on oil spill prevention, and that the latest engineering and safety procedures be used at all times when dealing with oil and its associated equipment.

1.3 DESCRIPTION OF FACILITY

The Wells Project is located on the Columbia River at River Mile 515.6. The power plant has a rating of 840 MW with ten Kaplan units. Operation of the project first started on September 1, 1967.

1.4 OWNER

Public Utility District No. 1 of Douglas County
1151 Valley Mall Parkway
East Wenatchee, Washington 98802-4497

1.5 PROJECT SUPERINTENDENT

Mike Bruno
Wells Hydroelectric Project
28905 US Highway 97
Pateros, Washington 98846-9602

1.6 RESPONSIBLE PARTIES

Bill Dobbins, General Manager
Office (509) 881-2220
Res. (509) 884-1191

Ken Pflueger, Assistant Manager/Chief Engineer
Office (509) 881-2245
Res. (509) 662-6316

Lori Morris, Safety Specialist
Office (509) 881-2243
Res. (509) 784-4012

Mike Bruno, Project Superintendent
Office (509) 881-2490
Res. (509) 923-9524

Dub Simmons, Operations Supervisor
Office (509) 881-2465
Res. (509) 923-2362

Meaghan Vibbert, Public Information Officer
Office (509) 881-2221
Res. (509) 886-5930

Wells Dam Control Room Operator
Telephone: (509) 923-2224 or (509) 923-2150
DCPUD Ext. 3471/3472
Mobile Radio(s)
1.7 RELATED AGENCIES

The following is a list of agencies that the facility may need or want to contact regarding oil spill prevention and cleanup.

Federal

1. U.S. Coast Guard
 Sector Portland
 Portland, Oregon
 Telephone: (503) 240-9310
 (For spill incidents occurring in southern Washington and the Columbia River.)

2. U.S. Environmental Protection Agency
 Seattle, Washington
 24-Hour Hotline: (206) 553-1263
 Address: U.S. EPA, Region X
 1200 Sixth Avenue, ECL 116
 Seattle, Washington 98101
 (The EPA is the pre-designated federal On-Site Coordinator for inland spills under the National Contingency Plan.)

3. National Response Center
 Washington, D.C.
 Telephone: 1-800-424-8802
 (toll calls) (202) 267-2675

State

1. Washington State Department of Ecology (Ecology)
 24-hour Emergency Spill Response
 Central Regional Office, Yakima
 Emergency Telephone: (509) 575-2490 (24-hour phone number)
 Address: 15 West Yakima Avenue, Suite 200
 Yakima, Washington 98902-3452

2. Washington State Emergency Management Division (EMD)
 24-hour Emergency Spill Response
 Telephone: 1-800-258-5990
 (Toll calls) (253) 912-4901 or (253) 912-4904

1.8 ENVIRONMENTAL SERVICES

Trained in-house personnel will perform all oil spill containment and cleanup activities. Outside environmental services shall not be used unless deemed necessary by the Project Superintendent.
Figure 1: Physical Layout – Wells Dam
2.0 FACILITY ANALYSIS

2.1 PHYSICAL LAYOUT

The project is situated midway between Chief Joseph Dam and Rocky Reach Dam at River Mile 515.6 on the Columbia River in Washington State, and develops a gross head of 76 feet for hydroelectric operation. The right (west) bank development is comprised of a rockfill embankment approximately 40 feet in height and about 2,300 feet long and fish facilities containing spawning channels and rearing ponds. The left (east) bank development consists of a rockfill embankment, approximately 160 feet in height at its maximum section, and about 1,000 feet in length. Concrete structures are situated between the two embankment sections; one fish facility structure at each end separated by a 1,000-foot structure comprised of 11 spillway bays integrated with 10 generating units, known as a “hydrocombine”.

As shown in Figure 1, six operational main transformers are located on the top deck of the hydrocombine at Elevation 795. Two additional transformers (2000 kVA) are located just downstream of the main transformers inside the switchyard (scheduled for installation in 2010/2011). The oil delivery intake for the turbine/governor system is also located on the top deck. Gasoline, waste oil, and propane storage tanks are located near the warehouse on the western side of the project. Day tanks for two emergency diesel generators and a main diesel storage tank are also located in this area. Transformers located onshore on the West bank include: two transformers near the emergency generators; two transformers in the vicinity of the fish hatchery; two transformers on the West Embankment in the monument area upstream from Generator Rehab Buildings A and B; one transformer at the Carpenter Island pumping station; one transformer on the West Embankment at Generator Rehab Buildings A and B, one transformer near the main Shop Building, and the spare main transformer located just north of the emergency generators on the West Bank.

2.2 OIL SPILL HISTORY

The Wells Project has experienced no oil spill event discharging harmful quantities of oil into navigable waters.

A "harmful quantity" of oil discharge, as defined in 40 CFR 110, is a discharge which:

- violates applicable water quality standards, or
- causes a film or sheen upon or discoloration of the water or adjoining shorelines, or
- causes a sludge or emulsion to be deposited beneath the surface of the water or upon adjoining shorelines.

2.3 POTENTIAL SPILL EVENTS

The probability of an oil spill at the Wells Project is low. A significant oil spill could conceivably occur if there is a major equipment failure or a rupture of an oil storage container. A more likely event would be a slow leak from a piece of equipment due to a failed gasket or seal, cracked bushing, or a leaking oil plug. Other potential events which could result in an oil spill include equipment or oil handling accidents and sabotage.

A listing of the individual oil storage containers and oil-bearing equipment, and their respective maximum spill potential (volume of oil), is listed in Section 2.4. The methods of spill prevention, containment, and countermeasure for oil storage containers and oil-bearing equipment, including physical barriers and procedures to be followed by facility personnel, are described in Section 2.5.
Most oil-containing items have secondary containment. In many instances, the spilled oil would drain to the station drainage sump. However, it is not feasible to install a secondary containment system for the oil in the turbine runner hubs. Thus, an oil spill contingency plan for the turbine runner hubs has been prepared as required by 40 CFR 112.7 (see Section 5).

2.4 INVENTORY OF OIL-CONTAINING EQUIPMENT AND TYPE OF OIL

The main oil-containing equipment maintained by personnel of the Wells Project is listed below. The transformer oil noted for the equipment is petroleum based transformer oil.

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>CAPACITY (gallons each)</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inside facility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turbine Guide Bearings (Shell Turbo-T-68)</td>
<td>90</td>
<td>10</td>
</tr>
<tr>
<td>Turbine Runner Hubs (Shell Turbo-T-68)</td>
<td>4,000</td>
<td>10</td>
</tr>
<tr>
<td>Turbine Governor Systems (Shell Turbo-T-68)</td>
<td>3,308</td>
<td>10</td>
</tr>
<tr>
<td>Generator Thrust Bearings (Shell Turbo-T-68)</td>
<td>3,450</td>
<td>10</td>
</tr>
<tr>
<td>Clean Oil/Dirty Oil Tanks (Shell Turbo-T-68)</td>
<td>Max. 9,700</td>
<td>2</td>
</tr>
<tr>
<td>Oil Storage Room (Turbine oil, greases, & composites of oil)</td>
<td>Approx. 1,500</td>
<td>1</td>
</tr>
<tr>
<td>Grounding Transformers (Transformer oil)</td>
<td>30</td>
<td>11</td>
</tr>
<tr>
<td>Potential Transformers (Transformer oil)</td>
<td>1</td>
<td>31</td>
</tr>
</tbody>
</table>

On deck of facility		
Main Transformers – T1 thru T5 (Shell Diala-AX)	14,400	5
230/115 Autotransformer – T6 (Shell Diala-AX)	9,000	1
Standby Generator (Diesel)	250	1
Potential Transformers (Transformer oil)	16	6
Potential Transformers (Transformer oil)	14,45	3
Current Transformers (Transformer oil)	35	2
Current Transformers (Transformer oil)	90	4
2000 kVA Transformers – T12 & T13 (Transformer oil)	735	2
Oil Delivery Truck (Shell Turbo)	Max. 7,000	1
Vickers Oil Pumps (Shell Turbo)	200	2

Onshore		
Spare Main Transformer near Shop Building (Shell Diala-AX)	15,230	1
Gas Tank (Gasoline)	4,000	1
Waste Oil Tank (Turbine oil)	1,000	1
Propane Storage Tank (40’ north of gas tank)	1,000	1
225 kVA Transformers near monument area – T8 (Transformer Oil)	200	1
225 kVA Transformer near monument area – T9 (Transformer Oil)	307	1
300 kVA Transformer at Carpenter Is. pump station – T10 (Transformer Oil)	99	1
300 kVA Transformer at buildings on West Bank – T17 (Transformer Oil)	177	1
1000 kVA Transformers near Fish Hatchery – T7 & T11 (Transformer oil)	480	2
1000 kVA Transformer at Fab Shop – T16 (Transformer Oil)	428	1
3750 kVA Transformers near diesel generator – T14 & T15 (Transformer oil)	1,058	2
Generator Day Tanks (diesel)	1,250	2
Bulk Storage Tank (diesel)	4,000	1

* Scheduled for Installation in 2010/11.
The six onshore tanks are above ground storage tanks. The gas tank is a double wall steel with a sounding well to detect leaks. The waste oil tank is welded steel and it has secondary containment. The diesel ‘day tanks’ are double-containment UL142 listed steel tanks located on the power modules. The bulk diesel storage tank is a double wall “FIREGUARD”-type tank. The propane tank is an ASME welded steel tank. Tanks are compatible with the contents that they hold.

An oil inventory list noting the locations of containers and oil-filled operating equipment holding less than 55-gallons of oil for the Project is maintained by the District and is updated on an annual basis. The inventory list is kept by the District’s Operations Supervisor on-site.

The District maintains records of the amounts of oil used on-site for all project equipment containing or using oil. These records are kept on site in the oil system transfer pump room.

2.5 OIL CLEAN-UP MATERIALS AND SYSTEMS

Best Management Practices or other control measures are to be utilized to prevent any oil-contaminated stormwater on the Project site from entering state waters. No emulsifiers or dispersants are to be used in state waters, including (a) water contained in sumps or (b) water contained in other areas that discharge to the sumps or discharge to the Columbia River.

2.5.1 OIL CLEAN-UP MATERIALS

The Wells Project has the following materials for use in cleaning up and containing spilled oil:

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber-Reinforced Rubber Bags:</td>
<td>Hydrocombine</td>
</tr>
<tr>
<td>- 1,000 Gallon Capacity</td>
<td></td>
</tr>
<tr>
<td>Floating Skimmer Pump</td>
<td>Hydrocombine</td>
</tr>
<tr>
<td>Two Portable Pumps</td>
<td>Hydrocombine</td>
</tr>
<tr>
<td>Oil-absorbent Material</td>
<td>Hydrocombine and Warehouse</td>
</tr>
<tr>
<td>Oil Spill Response Mobile Unit *:</td>
<td></td>
</tr>
<tr>
<td>- Boom (1000-foot)</td>
<td>Mobile Response Trailer at Warehouse</td>
</tr>
<tr>
<td>- Tool Box</td>
<td>Mobile Response Trailer at Warehouse</td>
</tr>
<tr>
<td>- PPE Bags</td>
<td>Mobile Response Trailer at Warehouse</td>
</tr>
<tr>
<td>- Decon Station</td>
<td>Mobile Response Trailer at Warehouse</td>
</tr>
<tr>
<td>- Absorbents</td>
<td>Mobile Response Trailer at Warehouse</td>
</tr>
<tr>
<td>- Miscellaneous Supplies</td>
<td>Mobile Response Trailer at Warehouse</td>
</tr>
</tbody>
</table>

* A complete inventory of the Oil Spill Response Mobile Unit (trailer) is contained in Appendix F

Fiber-Reinforced Rubber Bags & Portable Pumps

The fiber-reinforced rubber bags are suitable for oil disposal purposes. These bags, when used together, can hold the oil from all but the largest oil-containing item, the transformers. If a transformer fails and results in a large spill, the District will acquire the services of an oil tanker to transport the oil. Individual bags can be used for smaller spills. Two portable pumps are available for pumping spills from containment areas into the fiber-reinforced rubber bags or tanker. The District replaced the fiber reinforced bags in 2004. The replacement bags will be inspected at least every 5 years as part of the SPCC plan review and evaluation to determine if the bags should be replaced.
2.5.2 SYSTEMS

Hydrocombine Drainage System

The drainage system for the Wells Project is such that most of the floor drains would convey any oil spills and all other liquids to the station drainage sump. The floor drains in the Project have been identified and mapped. Any floor drains that are no longer needed have either been blocked or sealed. A map of the active floor drains is posted outside the Control Room for use by Operators and other personnel in the event of a spill. Maintenance personnel and/or response personnel (in the event of a spill) can safely reach the drainage sump through a 3’x3’ hatch covering opening; with several ladders and landings leading down to the sump area. Known sources of oily water are directed to an oil/water separator (see discussions below regarding the oil/water separator).

A rope type oil skimmer in the drainage sump operates continuously to collect and remove minor amounts of oil that may accumulate in the sump. These minor amounts of oil are automatically deposited in a reservoir. The oil within the reservoir is pumped to the oil/water separator on the right bank for treatment. From the sump, water level controls would automatically start one or more pumps to discharge the liquid into the river. A transducer/oil sensor has been installed in the sump to detect the presence of oil and announce a signal to the control room. The oil sensor alarm set-point for the monitor is set for an initial alarm at the 0.3 millimeter level.

At this signal, the pumps would be stopped immediately. The water and oil would be allowed to rise to a level so that the floating skimmer pump could be used to manually pump the floating oil into one of the fiber-reinforced rubber bags. The pumps would be controlled manually to keep the oil in the sump until the oil was removed. The volume of the sump is about 125,000 gallons and normal drainage inflow is minimal. If a spill were to occur during the night shift, the staff would execute all necessary measures to immediately respond to the spill and call additional staff, if required, for the cleanup operation. The oil-detection annunciator is tested routinely.

Oil/Water Separator

Two known sources of oily water in the Hydrocombine that formally discharged to the Hydrocombine drainage system include water draining into the turbine pits in Units 1 through 10 (approximately 200 gpm) and the Compressor Room Equipment drainage at Unit 5, Elevation 752 (approximately 20 gpm). Modifications to the turbine pit drain lines and the compressor room equipment drain lines in 2009 direct the oily water to an oil/water separator located on the West Bank for eventual release to the tailrace, instead of to the drainage sump. Any incidental oil that collects in the drainage sump (caused by accidental spills, etc.) is removed from the drainage sump by the rope skimmer and is likewise directed to the oil/water separator.

Intake Deck Transformer Drain System

A schematic of the drainage system for the transformers at the Intake Deck (Elevation 795) is shown in Figure 2. This figure reflects the transformer drain lines, containment vault and oil/water separator system. The drainage piping from each of the transformers conveys rainwater that falls within the transformer containment to a secondary containment vault on the West Bank or to a pump tank at Elevation 776 in the East Fish Facilities structure. Water in the pump tank is pumped to the drainage piping that connects to the secondary containment vault on the West Bank. In the event of an oil spill within the transformer containments, the oil would drain to the pump tank or secondary containment vault (similar to the rainwater). Rainwater that collects in the containment tank is pumped manually up to the oil/water separator. Oil that collects in the containment vault (from a leak in a transformer) is pumped to an oil-recovery truck for disposal onsite.
2.5.3 CLEAN-UP OPERATIONS AND DISPOSAL RECORDS

In the event of a discharge of oil, fuel or chemicals in state waters or onto land with a potential for entry into state waters released from project operation, maintenance activities or construction, effort will begin immediately to complete the containment, remove visible floating oils from the water, and clean-up the spilled materials, taking precedence over normal work. Clean-up shall include proper disposal of contaminated materials and oil, and used clean-up materials. New supplies will be restocked as soon as possible. No emulsifiers or dispersants will be utilized in the clean-up operations (whether liquid is contained in the sumps or other areas that discharge to the sumps or the Columbia River).

Copies of the disposal records of the contaminated materials and oil, and used clean-up materials are kept on file. In addition, the records of proper disposal are kept in the oil consumption records.

2.6 SPILL PREVENTION, CONTAINMENT, AND COUNTERMEASURE

2.6.1 EQUIPMENT AND EQUIPMENT COMPONENTS

The spill prevention, containment and countermeasure for specific equipment and components of the equipment are described below. Secondary containment capacity provided for oil-containing equipment is 110 percent of the largest volume of oil for any container or equipment.

TURBINES

Turbine Guide Bearings

If leakage occurs, the oil will drain to the packing box sumps and be pumped to the oil/water separator (see Section 2.5). The turbine/generators will shut down automatically with a low oil level alarm.
The best prevention of turbine bearing leakage is through observation by maintenance and operation personnel. Any noticeable drop in the bearings’ oil levels or any abnormal vibrations should be reported to the Project Superintendent.

Turbine Runner Hubs

The probability of spillage of runner hub oil is minimal if all valves, ports, etc., are checked out in accordance with the maintenance manual when the turbines are returned to service. If leakage does occur, the affected turbine would be immediately put out of service and the causes repaired. During normal maintenance, the surface of the hubs shall be inspected for damage caused by cavitation. If oil leakage is discovered through normal daily shift inspection, or while returning a turbine unit to service, the leak shall be reported immediately to the Project Superintendent.

If oil leakage is apparent, the affected turbine shall be immediately put out of service and the cause(s) of the leak repaired. Oil shall be cleaned up using sorbent materials and disposed of in properly labeled portable drums or disposable bags.

Oil leakage of the runner hubs creates potential for a spill directly into river waters. Careful observation and communication by facility personnel is essential in keeping this risk to a minimum. An oil level drop in the governor oil system indicates a possible spill to the river waters due to leakage from the turbine runner hubs, and personnel shall be prepared to administer the Oil Spill Contingency Plan. Any noticeable drop in the governor oil system level shall be reported to the Project Superintendent.

Turbine Governor Systems

One turbine governor system is located in each unit at Elevation 705. As presently arranged, if the sump tank or pressure tank bursts, the oil would drain into the station drainage sump to reduce fire hazard.

The oil is directed to the floor drains at Elevation 705 and in the elevator pits. This floor has a 6-inch curb all around except at the elevator door sill. In the event of a tank rupture, oil would be directed to the sump. Maintenance and operations personnel will react to abnormal governor pressure readings and pipe leakages by reporting them to the Project Superintendent.

Generator Thrust Bearings

If leakage occurs, the oil will drain to the packing box sumps (turbine pits) and be pumped to the oil/water separator (see Section 2.5). The turbine/generators will shut down automatically with a low oil level alarm. In the event of a bursting-type action of the bearing oil reservoir, the unit will shut down automatically. Some of the oil from the reservoir will collect in voids within the unit and can be pumped out and into the dirty oil tank or into fiber reinforced rubber bags stored at the project for cleaning up and containing spilled oil. Some of the oil will collect in the packing box sumps and be pumped to the station drainage sump where it will be contained and collected.

Any noticeable drop in the level of the thrust bearing reservoir or any abnormal vibration shall be reported to the Project Superintendent.
TRANSFORMERS

Grounding and Potential Transformers (inside facility)

There is one grounding transformer in each unit at Elevation 736. A spare grounding transformer is located in Unit 7, Elevation 764. Since the capacity of the grounding transformer is only 30 gallons, a spill from this piece of equipment is not likely to cause a release in harmful quantities. Small leaks would probably be detected before oil reaches the floor drains. Any operator noticing a leak shall notify the Project Superintendent and contain as much oil as possible using absorbent materials. Otherwise, oil spilled from the grounding transformers would drain through floor drains into the station drainage sump, where the spilled oil would be detected and cleaned up as described in Section 2.5. The cause of the leak shall be repaired or the unit shall be replaced as soon as possible.

There are three potential transformers in each unit at Elevation 720 holding approximately one gallon each. Leaks from these units would also reach the station drainage sump. They shall be handled similarly to the grounding transformers.

Main Transformers (T1 thru T5)

The transformers could possibly burst or be struck by an object that could cause leakage of oil onto the deck of the Hydrocombine.

Spilled oil is contained by barrier walls around each main transformer and the transformer drain system conveys the liquid to the West Bank secondary containment tank (see Figure 2 and Section 2.5).

Spare Main Transformer

The spare main transformer is stored in the vicinity of the Shop Building on the West Bank. The spare transformer has its own secondary containment area with no outlet. The containment area is monitored on a regular basis (see Section 3.0). Any oil or stormwater found in the containment area is pumped out and disposed of in properly labeled portable drums.

230/115 Autotransformer (T6)

The autotransformer could possibly burst or be struck by an object that could cause leakage of oil onto the deck.

Spilled oil is contained by barrier walls around the autotransformer, and the transformer drain system conveys the liquid to the West Bank secondary containment vault (see Figure 2 and Section 2.5).

Standby Generator

The standby generator is located on the Elevation 795 deck. The generator is enclosed in a metal building. There are drains in the low points of the floor which lead to the transformer drain system (see Section 2.5).

Potential Transformers (on the Elevation 795 Deck and in Warehouse)

There are six potential transformers with an oil capacity of 16 gallons each on the Elevation 795 deck and three potential transformers with an oil capacity of 14.45 gallons each. An added metal housing provides adequate secondary containment. Since the transformers are on poles...
above the deck surface, a flexible hose connects the secondary containment to 2-inch drainage piping. A flexible hose is used instead of rigid piping, since a vehicle colliding with the hose would not rupture it. Hoses are inspected for any abnormalities such as leaks or damage during the weekly inspection of the transformers. If a problem is found then the inspection report notes the problem and necessary action is taken. See Section 3 for additional information regarding inspections/maintenance.

The draining system is connected to that of the main transformers (see Section 2.5, ‘Transformers Drain System’ for flow information and cleanup).

There is one spare potential transformer, with an oil capacity of 16 gallons, located in the warehouse.

Current Transformers

There are six current transformers on the Elevation 795 deck. Two of the transformers hold 35 gallons and the other four hold 90 gallons. Their secondary containment systems are the same as those used for potential transformers. A spare of each type of transformer is stored at Elevation 705 at Unit 10.

2000 kVA Transformers – T12 and T13

Two 2000 kVA transformers are located on the Elevation 795 deck; T-12 at the West End in the vicinity of Units 2 and 3; and T-13 in the vicinity of Units 6 and 7. Each of these transformers holds 735 gallons. Their secondary containment systems consist of an encircling wall able to contain 110 percent of the volume of oil. The drain for stormwater is tied into the drain systems from Transformers T1 and T3. Drainage flow is described under ‘Transformers Drain System’; see Section 2.5. (Installation of transformers is scheduled in 2010/2011.)

West Bank Transformers – T7, T 8, T9, T10, T11, T14, T15, T16 and T17

There are several transformers (with secondary containment systems) located on the West Bank, as shown in Figure 1. The capacity of each of these transformers is described in Section 2.4. The secondary containment system of each transformer contains 110 percent of the volume of oil.

ELEVATION 745 – PUMPS

Vickers Oil Pumps

The Vickers Oil Pumps are located on the east and west fish intake decks (Elevation 745) and control the gates that regulate the volume of water that flows out of the east and west fish attraction facilities. If the pumps leaked oil, it could flow into the tailbay of the east and west facilities and into the east fish attraction facilities, around a hatch cover in the deck.

The District has installed a metal barrier around the Vickers pumps to contain oil leaks. The pumps are located under an overhang and do not need a drainage valve for rainwater or snow melt.

2.6.2 STORAGE CONTAINERS

The spill prevention, containment and countermeasure for storage containers are described below. It should be noted that proper containment is provided around each storage containers or around a
combination of storage containers as appropriate. The containment capacity provided for the storage containers equals the volume of the largest container plus 10 percent.

ELEVATION 752 – TANKS & STORAGE ROOM

Clean Oil Tank and Dirty Oil Tank

The clean oil tank and the dirty oil tank are located in a separate oil storage room at Elevation 752 in Unit 4. There are no openings except a four-foot-wide doorway protected by a fire door. The doorway has a concrete curb six inches high and an aluminum plate that extends 31.5 inches above the floor of the room.

A float switch has been installed to detect the presence of oil within the storage room. In the event of a relatively slow leak, this would inform the operator in time to alert the Project Superintendent. A sudden rupture of a nearly full tank will be retained in the oil storage room by the aluminum plate barrier.

Oil Storage Room

The oil storage room is located at Unit 9, Elevation 752 and approximately 1,000 gallons of oil are stored in drums located in the room. The room is curbed and an oil spill will drain to the station drainage sump.

OTHER TANKS

Gas Tank

A gasoline storage tank was installed to the east of the warehouse in the Fall of 1991 and has secondary containment and a sounding well to detect leaks. The tank area is not fenced, but the tank is locked and the area is lighted.

Waste Oil Tank

The waste oil tank is relocated in a fenced and locked concrete pad to the north of the warehouse, and a metal barrier around the tank provides secondary containment. The waste oil tank has ¼-inch thick steel walls and is pressure rated to 85 psi. The tank is suitable for the storage of waste oil. A manually-operated, non-flapper type valve has been provided to periodically drain rainwater or snow melt from the containment area.

Diesel Tanks

The diesel ‘day tanks’ are double-containment UL142 listed steel tanks located on the power modules.

The bulk diesel storage tank is a double wall “FIREGUARD”-type tank located in the same area as the Gas Tank. The tank area is not fenced, but the tank is locked and the area is lighted.

2.6.3 OIL DELIVERY TRUCKS

The spill prevention, containment and countermeasure for oil delivery trucks are described as follows:

Any loose hose connection or accidental tank truck rupture will cause a spill on the Elevation 795 deck. The oil could enter the deck drains and be conveyed to the tailrace. District
personnel shall direct the delivery truck driver to place a seal over the deck drains so that a spill will be contained on the deck.

Special care shall be taken by operating personnel when connecting and disconnecting hoses from the oil delivery truck. Tank truck loading and unloading procedures shall meet requirements established by the Department of Transportation (see Appendix D and Section 5.4). To guard against the possibility of a runaway gantry colliding with the tank truck, the tank truck should not be parked in an area that allows this situation to occur.

2.6.4 OIL TRANSFER PROCEDURES

The District has developed written oil transfer procedures that cover communication, proper valve alignment, etc. All oil-handling personnel will be briefed on the procedures periodically. Best Management Practices and industry standards will be employed for protecting water quality and preventing and containing oil spills when performing oil transfers.

2.7 SECURITY

The facility is manned 24 hours a day and is monitored by video camera. Monitors are located in the office and the control room. The entrance has a gate which is normally closed. Once past this initial screening, a person intent on vandalism could access the equipment on the deck of the facility and could cause oil to be spilled. This person would probably be noticed, however, since employees are usually on the deck. It would be more difficult to go inside the facility unnoticed. Facility entrances at the El. 795 deck are secured by electronic key pads after normal working hours. Other facility entrances are secured by electronic key pads 24 hours a day. No incidents of vandalism have occurred in the history of this facility.

The adjacent onshore storage facilities are accessible by the public, but all facilities there are locked. The 4,000-gallon gasoline tank has locked valves and the area is illuminated. The 1,000-gallon waste oil tank is located in the fenced storage area to the north of the general warehouse, which has a locking gate and barbed wire. The tank has secondary containment consisting of a metal barrier constructed around the tank. The gate to this area will be locked when the area is unoccupied.

The shop building on the West Bank is accessible by the public, but all facilities there are locked. A security fence with a locking gate surrounds the diesel generators, also located on the West Bank.

3.0 MAINTENANCE AND INSPECTION PROCEDURES

3.1 INSPECTIONS – DAILY

Visual inspection of all oil-containing transformer equipment, transformer containment areas, turbine equipment, oil storage tanks, and oil-carrying pipelines shall be done on a daily work-shift basis. In addition, the inspection includes the following:

- Check all fuel and lubrication hoses, oil drums, oil or fuel transfer valves and fittings, etc. for drips and leaks. Three units will be inspected each day, rotating through all ten units approximately every 3 days.
- Inspect equipment containing oil and view oil-level gauges. Three units will be inspected each day, rotating through all ten units approximately every 3 days.
Whenever oil or grease is observed on the sorbent materials, the sorbent materials will be removed and properly disposed of, and new sorbent material will be placed.

During snowy or icy conditions, close (and at minimum daily) inspections will be conducted of the containment areas and any containment drains. Any observed stormwater pooling in containment areas will be removed.

Inspect oil/water separator and the secondary containment vault at the oil/water separator for proper operation.

Stormwater in transformer and oil-filled operating equipment containment areas on the intake deck (Elevation 795) will be monitored for the presence of oil. Contaminated (and non-contaminated) stormwater drains into the drainage piping which conveys the liquid to the secondary containment vault on the West Bank (see Figure 2). All liquid in the containment vault is inspected by operators before being manually pumped up to the oil/water separator prior to its release into the tailrace. If oil is present in other oil-filled equipment containment areas, the oil-contaminated stormwater shall not discharged to the ground or state waters but properly disposed of and recorded (as described in Section 7.6).

Crews shall be instructed to report any signs of oil leakage to the chief operator on duty as soon as possible. The chief operator will determine the course of action to be taken.

3.2 OTHER ROUTINE INSPECTIONS / MAINTENANCE

At least annually, thorough routine inspection of the oil-containing equipment, storage tanks, and related support systems shall take place. At minimum, this in-depth inspection shall include the following areas:

- Storage tank seams and pipe openings shall be observed for leakage, corrosion, or other questionable deterioration.
- The floating skimmer and portable sump pumps shall be cleaned and mechanically tested.
- Sump pumps shall be cleaned and mechanically tested.
- Secondary containment structures shall be inspected periodically and verified such that they are impervious (cracks shall be filled, and pipe penetrations shall be caulked, if required).
- All oil-carrying pipelines shall be subjected to examination and routine maintenance including flange joints, expansion joints, valve glands and bodies, catch pans, valve locking devices, and metal surfaces of any kind.
- Piping supports shall be observed for corrosion and abrasion, and for the proper expansion and contraction. Supports that have deteriorated or do not meet original design considerations shall be replaced or repaired.
- The facility security system shall be tested, and fencing and signs shall be inspected and repaired as needed.
- Governor oil pressure and sump level alarms and trip circuits shall be tested during biennial inspection and maintenance of each generating unit. Pressure vessels are also inspected by state inspectors every two years.
- The gasoline storage tank stilling well sounded with a dipstick to detect the presence of fluid.
- Test the float switch located in the oil storage room on Elevation 752 at Unit 4.
• Wash water containing oils, grease or other hazardous materials resulting from wash down of equipment or working areas shall be contained for proper disposal and shall not be discharged into state waters.

• When conducting in-place maintenance work on transformers, transporting transformers and transferring transformer oil, Best Management Practices or other control measures will be utilized and be in accordance with industry standards for protecting water quality, and preventing and containing oil spills.

• The District shall obtain prior approval from Ecology before breaching containment areas for reasons other than containment area maintenance.

• All oil-gauges (on oil-filled operating equipment and storage containers) have appropriate level markings (including sight-glass gauges) to ensure Project Operators and maintenance personnel can easily identify an unusual condition.

3.3 INSPECTION LOGS

All inspection activities shall be recorded in a log and signed by the appropriate supervisor and inspector. The inspection records shall be maintained for a minimum period of three years. Detailed written inspection and recording procedures are given in the Standard Operating Procedures Manual, which shall be kept with the SPCC Plan in the locations listed in Section 6.6 of the SPCC Plan.

These records are incorporated in this report by reference.

3.4 REMOVAL/DISPOSAL RECORDS

The District shall record the removal or discharge of stormwater (contaminated and non-contaminated) from containment areas. These removal records are kept on site and are available for inspection by Ecology. This includes pumping of water from the secondary containment vault at the oil/water separator.

Annually, hazardous materials (such as, batteries, light bulbs, etc.) are disposed of properly. Disposal records of contaminated cleanup supplies and proper disposal records of hazardous materials are kept in the Wells Project Office.

4.0 TRAINING OF PERSONNEL

The Project Superintendent shall be responsible for providing an annual training program for the Wells Project facility oil-handling personnel.

Training programs and periodic briefings shall review the SPCC Plan, the Oil Spill Contingency Plan, and the Standard Operating Procedures Manual, and shall describe actual experiences, recent spill events or failures, new or preventative control and cleanup measures, and use of the oil spill clean-up materials. Training shall also include review of all District forms and documentation procedures. Crews must understand the SPCC Plan, the Oil Spill Contingency Plan, and the Standard Operating Procedures Manual. As part of the training, staff will be acquainted with the floor drain system and the location of the posted floor drain maps, and on how to respond in the event of a spill.
5.0 OIL SPILL CONTINGENCY PLAN

The purpose of Sections 5.0 and 6.0 of this SPCC Plan is to meet the U.S. Environmental Protection Agency requirements for oil spill contingency planning as defined in 40 CFR 112. Sections 5.0 and 6.0 comprise the Oil Spill Contingency Plan for the Wells Hydroelectric Facility.

5.1 COMMITMENT TO CONTINGENCY PLAN

The District is committed to providing the manpower, equipment, and materials required to expeditiously control and remove any harmful quantity of oil discharged. This will include hiring an oil spill response contractor if needed.

5.2 NEED FOR CONTINGENCY PLAN

The Wells Project Hydrocombine is located over the Columbia River. Therefore, any uncontained spills that occur on or in the Hydrocombine could drain directly into the Columbia River. Of all of the oil-containing structures at the Wells Project, it is not feasible to provide complete secondary containment for the turbine runner hubs or an oil delivery truck during a delivery period.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>CAPACITY (gallons each)</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbine Runner Hubs</td>
<td>4,000</td>
<td>10</td>
</tr>
<tr>
<td>Oil Delivery Truck</td>
<td>Max. 7,000</td>
<td>1</td>
</tr>
</tbody>
</table>

Thus, a contingency plan is required under 40 CFR 112.7 (d).

5.3 TURBINE RUNNER HUBS

It is not feasible to prevent oil from the turbine runner hubs from reaching river waters in the case of a leak. As with any hydroelectric facility, large quantities of river water are rushing past and turning the turbine blades while the turbine is in operation. Thus, the turbine runner hubs are necessarily in contact with the water. Also, it is impossible to place an appropriate alarm (flowmeter or oil detector) in connected oil piping, since oil is circulating continuously between the turbine runners and the oil tanks.

In the case of a complete failure of the runner hub (which is highly unlikely), the pressure alarm in the oil storage tank would notify operators of the problem and contingency measures would start immediately. A slow leak in a turbine runner hub would not be noticed immediately. In such an event, it may be several weeks before the oil tank level has lowered noticeably, even though oil levels are carefully monitored.

Once a small or large leak is discovered, the turbine will be shut down, the gates to that turbine will be closed, and the cause of the leak repaired. If it is determined that water quality standards may have been exceeded due to the spill, then clean-up actions will be initiated as described in Section 5.5.
5.4 OIL DELIVERY TRUCK

At the Wells Project, oil is used for insulating and lubricating purposes only. Therefore, "consumption" consists only of replacing dirty oil with clean oil and is a rare occurrence. A 7,000-gallon oil delivery is needed approximately once every ten years.

Containment is not feasible due to the design of the drainage system and the need to keep the area accessible to large vehicles. Nearby drains lead directly to the river and cannot be connected to the other containment systems on the deck. The following control measures should prevent oil from reaching river waters.

The oil delivery truck shall be supervised while it is in the Wells Project area. The truck operators will be given the “Notice to Tank Truck Drivers” (Appendix D) and directed to the oil pumping station. Before oil transfer begins, the truck shall be visually inspected for obvious defects. A Wells Project employee or the delivery person shall plug up the drains closest to the pumping station to provide some secondary containment volume in the sloped areas on the deck of the hydrocombine. Minor leaks or spills will be contained within this volume. A portable pump and fiber-reinforced rubber bags shall be on hand. Unless the truck suddenly bursts, the portable pump should be able to handle the flow of oil from a major spill. After oil transfer is complete, the supervisor shall make sure that the truck is completely disconnected and connecting hoses properly stored before the truck will be allowed to leave the oil transfer area.

If, in spite of the above measures, oil is not contained, then the contingency measures described in Section 5.5 shall be followed.

5.5 CONTINGENCY PROCEDURES

The importance of oil spill prevention, containment, and clean-up shall be stressed during the annual safety training meetings. As discussed in Section 4.0, "Training of Personnel," all work crews will be familiar with the SPCC Plan and the Oil Spill Contingency Plan. As soon as an employee notices an oil spill of any kind, he or she will notify the Control Room at the dam. Notification of all interested parties shall then follow the notification procedures outlined in Section 6.0. If the spill is not contained within the facility, the oil spill discoverer shall recover as much oil as is feasible using the oil-containing equipment stored on site while waiting for further instruction.

Once notified, the Project Superintendent shall concurrently follow the notification plan described in Section 6.0 while organizing oil containment, recovery, and clean-up operations. For extended clean-up operations, the Control Room at the dam shall be the communication center.

Wells Project personnel shall provide the emergency containment and oil collection with the supplies on hand (see Section 2.4). When it is determined that a thorough clean-up of any oil spill in harmful amounts is beyond the capabilities of the on-site resources of the Wells Project, an oil spill response contractor shall be hired. The Department of Ecology’s “Hazmat Spill Contractor List”, updated in July 2009, is contained in Appendix B of this plan.

The most recent updated list can be obtained through the Department of Ecology’s web page (list is under the “When Spills Happen” section): http://www.ecy.wa.gov/programs/spills/spills.html

The Project Superintendent shall determine what is to be done with the discharged oil; whether it can be filtered and reused by the District or to be disposed of by an approved method. Any oil that reaches the...
ground may require the removal and disposal of contaminated soils. A list of Regional Treatment Centers for Petroleum Contaminated Soils (January 2010) is contained in Appendix C of this plan.

5.6 COMPATIBILITY WITH STATE AND REGIONAL PLANS

The current state and regional oil spill contingency plans that are applicable to the Wells Project location have all been incorporated into the Northwest Area Contingency Plan and Geographic Response Plans.

The 2009 Northwest Area Contingency Plan and associated Geographic Response Plans (May 2004) are available on the Internet at http://www.rrt10nwac.com. Wells Project personnel and any contractor hired by the District shall conform to the guidelines of the Northwest Area Contingency Plan. This includes following guidelines on oil dispersant use, in-situ burning, and oily waste treatment and disposal. Oil dispersants should not be used unless explicit permission is given by the Environmental Protection Agency, Region 10. In-situ burning is allowed with permission under certain circumstances outlined in the Northwest Area Contingency Plan.

Wells Project personnel and any contractor will cooperate completely with any on-site coordinator and spill response team provided by the state, regional, or federal government.

6.0 NOTIFICATION AND DOCUMENTATION REQUIREMENTS

6.1 IN-HOUSE NOTIFICATION

The discoverer of an oil spill at the Wells Project shall immediately notify the Hydrocombine Control Room. The control room shall notify the day-shift/chief operator. Figure A-1, The SPCC Notification Chart, shows the lines of communication to be followed in the event of an oil spill incident.

It is the responsibility of the day-shift supervisor or night-shift chief operator or designee to notify the appropriate clean-up crews, the Manager, Chief Engineer/Assistant Manager, Safety Specialist, and Project Superintendent.

Clean-up action shall be taken in accordance with Section 2.5 of the SPCC plan.

6.2 IMMEDIATE REPORTING REQUIREMENTS

The Safety Specialist shall be responsible for oil spill notification to the appropriate State and Federal officials. This shall be done as soon as possible after proper assessment and quantification of the oil spill occurrence.

Federal law requires that all spills of oil in harmful quantities into navigable waters or threat of release be immediately reported by the spiller to the National Response Center (NRC). In addition, Washington State law requires that all spills of oil into Washington State waters must be immediately reported to the Washington State Emergency Management Division (EMD). The Northwest Area Contingency Plan also requires the notification of the U.S. Environmental Protection Agency (EPA), Seattle for spills occurring in inland waters of Washington, Oregon, and Idaho. Spills into state waters and spills onto land with a potential for entry into state waters, or other significant water quality impacts, shall be reported immediately (within one hour) to the Washington State Department of Ecology (Ecology), Central Regional Office. Any oil detected in the sumps requires immediate cleanup and EMD and NRC notification.

The appropriate Federal and State contacts for the Wells Project are as follows:
REQUIRED NOTIFICATION OF OIL SPILLS:

1. National Response Center (NRC) .. 1-800-424-8802
 Toll Call: (202) 267-2675

2. Emergency Management Division ... 1-800-258-5990
 (Washington State EMD) Toll Call: (253) 912-4901
 (253) 912-4904

3. US Environmental Protection Agency (EPA)24-Hour Hotline (206) 553-1263
 Region X, Seattle..

 Central Regional Office, Yakima

When reporting a spill or release to the above agencies, it is important to collect as much information as possible. That information should include:

- Date and Time of call
- Caller Name, Address, & Phone Number
- Name of Person Taking the Report
- Facility information:
 - Name
 - Type of Facility
 - Location of incident
 - Date and Time the Incident occurred or was discovered
 - Description of spill (i.e. size, color, smell, etc.)
 - Type of Incident (Explosion, Collision, Grounding, etc.)
 - Materials released
 - Source of Materials released
 - Estimated Amount released
 - Total Potential quantity that could be released
 - Environmental media impacted or potentially impacted by spill (i.e. air, water, ground/soil)
 - Weather/Sea Conditions
 - Point of Contact (Responsible Party Name & Phone #)
 - Facility Agent(s) (Name & Phone)
 - Name and contact information of insurance carrier
 - Description of who is on-scene and what response activities are being done or have been completed
 - Have excavations occurred
 - Other Agencies notified
For liability purposes, the calls should be followed with a letter (including the Spill Incident Report) to be filed in the oil spill log and to be sent to the EPA and Ecology listing the information given and received during the notification phone calls. The Spill Incident Report to Ecology’s Central Regional Office will be provided within fifteen (15) days of the incident (spills into state waters, or onto land with a potential for discharge to state waters). There can be civil and criminal charges for not reporting discharges in a timely manner or for reporting false information. Thus, documentation of the notification call is important. The addresses are shown below:

U.S. EPA, Region X
1200 Sixth Ave., ECL 116
Seattle, Washington 98101

Washington State Department of Ecology
Central Regional Office
15 West Yakima Avenue, Suite 200
Yakima, Washington 98902-3452

6.3 NOTIFICATION TO OTHERS

The local fire department shall be notified by the day-shift chief operator or the night-shift chief operator or designee if there is a potential fire hazard concurrent with the oil spill occurrence.

The local police department shall be notified by the day-shift chief operator or night-shift chief operator or designee if there is evidence of sabotage, misconduct, or other wrongdoing.

The responsibility of contacting and/or responding to the news media shall be the exclusive responsibility of the Public Information Officer.

6.4 DOCUMENTATION OF SPILL EVENT

A Spill Incident Report (report) shall be kept of all oil spill events. The report shall contain the date and time of discovery, actions taken, telephone calls, and weather conditions. It shall be a complete account of the spill event through completion of clean-up and restoration. A copy of the report shall be sent to the Project Superintendent and Safety Specialist upon completion. The chief operator shall keep the report on file in the event of any future legal or government action that may result from the spill event.

The report shall be completed by the initial oil spill discoverer along with the operator who was on duty at the time of the spill. All reports of oil spill shall be kept on file for a minimum of three years and shall include the following information:

1. Date and time of the spill, and the location where it was first observed.
2. Type and quantity of the oil spill.
3. Cause of the spill.
4. Personnel and equipment involved.
5. Containment and clean-up action taken.
6. Sequence and time of events.
7. Evidence, such as witnesses, photographs, and samples.
8. Action taken to prevent similar occurrences.
9. Assessment of damage and steps required for restoration.
10. Samples taken and laboratories used.

6.5 OIL SPILL REPORT REQUIREMENTS

Whenever the Wells Project facility has discharged more than 1,000 gallons of oil into or upon navigable waters or adjoining shoreline in a single spill event, or discharged more than 42 gallons of oil upon navigable waters or adjoining shorelines in two spill events occurring within any twelve-month period, the District shall submit within sixty days a report of the spill(s) in accordance with 40 CFR 112.4. Any reports shall also be submitted to state agencies in charge of water pollution control activities.

6.6 SPCC PLAN LOCATIONS

At least one copy of the SPCC Plan and the Oil Spill Contingency Plan shall be kept in the following locations. All personnel shall be informed of these locations:

1. The Project Superintendent’s Office (and Residence)
2. The Control Room at the dam
3. The Chief Engineer/Assistant Manager's Office (and Residence)
4. The Safety Specialist's Office (and Residence)
5. The District’s Public Information Office (and Residence)

7.0 WASHINGTON STATE RULES, REGULATIONS AND GUIDELINES

7.1 WASHINGTON STATE LAWS

Discharge of any oil, fuel chemicals, and waste liquid water or solids to the waters of the state of Washington or onto land with a potential for entry into waters of the state is prohibited, Water Pollution Control Act (RCW 90.48) and Oil and Hazardous Substance Spill Prevention and Response (RCW 90.56).

7.2 COLUMBIA & SNAKE RIVER SPILL RESPONSE INITIATIVE

The Columbia and Snake River Spill Response Initiative (CSR-SRI) is a collaborative effort made up of local, state, and federal oil spill response community as well as members of industry. The initiative brings together a number of resources tailored for the area such as a notification list and contact of local responders, customized strategies for oil spill response, maps, locations of oil spill response equipment caches, and training opportunities.

The District is a member of the Upper Columbia Response Group. The location of equipment (listing can be found in Appendix F) at Wells Hydroelectric Plant is the upper warehouse area of Wells Dam.
Resources at Wells Dams include limited spill equipment and boats. Training opportunities include Incident Command System (ICS) training, and Boom Deployment training.

7.3 INCIDENT COMMAND SYSTEM

The District participates in the Incident Command System whenever a Unified Command is established in response to a spill incident that involves or potentially impacts one or more Projects.
8.0 Attachment C-II of 40 CFR 112
Certification of the Applicability of the Substantial Harm Criteria

Facility Name: Wells Hydroelectric Project

Facility Address: The Wells Hydroelectric Project is located on the Columbia River at River Mile 515.6. Correspondence can be addressed to Mike Bruno, Wells Hydroelectric Project, 28905 US Highway 97, Pateros, Washington 98846-9602.

1. Does the facility transfer oil over water to or from vessels and does the facility have a total oil storage capacity greater than or equal to 42,000 gallons?
 Yes _____ No _____

2. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and does the facility lack secondary containment that is sufficiently large to contain the capacity of the largest above-ground oil storage tank plus sufficient freeboard to allow for precipitation within any aboveground oil storage tank area?
 Yes _____ No _____

3. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and is the facility located at a distance (as calculated using the appropriate formula in Attachment C-III to this appendix or a comparable formula\(^1\)) such that a discharge from the facility could cause injury to fish and wildlife and sensitive environments, see Appendices I, II, and III to DOC/NOAA’s “Guidance for Facility and Vessel Response Plans: Fish and Wildlife and Sensitive Environments” (see Appendix E to this part, section 13, for availability) and the applicable Area Contingency Plan?
 Yes _____ No _____

4. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and is the facility located at a distance (as calculated using the appropriate formula in Attachment C-III to this appendix or a comparable formula\(^1\)) such that a discharge from the facility would shut down a public drinking water intake? \(^2\)
 Yes _____ No _____

5. Does the facility have a total oil storage capacity greater than or equal to 1 million gallons and has the facility experienced a reportable oil discharge in an amount greater than or equal to 10,000 gallons within the last 5 years?
 Yes _____ No _____

Certification

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document, and that based on my inquiry of those individuals responsible for obtaining this information, I believe that the submitted information is true, accurate, and complete.

Signature

Ms. Lori Morris
Name (please type or print)
Safety Specialist
Title

Date 08/31/2010

\(^1\) If a comparable formula is used, documentation of the reliability and analytical soundness of the comparable formula must be attached to this form.

\(^2\) For the purposes of 40 CFR part 112, public drinking water intakes are analogous to public water systems as described at 40 CFR 143.2(c).
APPENDIX A

SPCC NOTIFICATION CHART
SPCC Notification Chart

HAZARDOUS OIL SPILL DISCOVERER

HYDROCOMBINE CONTROL ROOM
Tele. (509) 923-2224 or (509) 923-2150

DAY-SHIFT / NIGHT-SHIFT CHIEF OPERATOR
Tele. (509) 923-2224

PROJECT SUPERINTENDENT
Mike Bruno, (509) 881-2490
Res. (509) 923-9524

CLEAN-UP CREW

ASSISTANCE
POLICE DEPARTMENT
FIRE DEPARTMENT

ASSISTANT MANAGER / CHIEF ENGINEER
Ken Pflueger, (509) 881-2245
Res. (509) 662-6316

SAFETY SPECIALIST
Lori Morris, (509) 881-2243
Res. (509) 784-4012

GENERAL MANAGER
Bill Dobbins, (509) 881-2220
Res. (509) 884-1191

NATIONAL RESPONSE CENTER
1 (800) 424-8802
1 (202) 267-2675

WA. STATE EMD
1 (800) 258-5990

U.S. EPA, REGION X
1 (206) 553-1263

WA. DEPT OF ECOLOGY
1 (509) 575-2490

PUBLIC INFORMATION OFFICER
Meaghan Vibbert, (509) 881-2221
Res. (509) 886-5930

NEWS MEDIA

See Section 6.0 for notification and documentation requirements.
See Section 1.6 for the list of responsible parties.

Figure A-1 Wells SPCC Notification Chart
APPENDIX B

HAZMAT SPILL CONTRACTOR LIST
Hazmat Spill Contractor List

Ecology does not verify or endorse any of the contractors or information on this list. Information on this list is subject to change. http://www.ecy.wa.gov/programs/spills/response/hazmatspillcontractorlist.pdf

<table>
<thead>
<tr>
<th>COMPANY LOCATION</th>
<th>COMPANY NAME</th>
<th>SPILL NUMBER</th>
<th>OIL SPILL</th>
<th>SPILL TYPE</th>
<th>HAZ MAT</th>
<th>ORGANIC**</th>
<th>REACTIVES CYLINDERS</th>
<th>VAC TRUCK</th>
<th>VESSEL/WATER</th>
<th>STATE COVERAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aberdeen</td>
<td>Apex Environmental</td>
<td>(360) 352-3990</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aberdeen</td>
<td>Evergreen Environmental Inc.</td>
<td>(360) 533-0114</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Battleground/Waitsburg</td>
<td>3 Kings Environmental</td>
<td>(360) 666-5464</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bellingham</td>
<td>Matrix Service</td>
<td>(360) 676-4905</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bellingham</td>
<td>Western Refinery Service</td>
<td>(360) 366-3303</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camas</td>
<td>West Coast Marine Cleaning</td>
<td>(360) 696-3362</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Astoria/Corvallis, OR</td>
<td>NWFF Environmental</td>
<td>(800) 942-4814</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Everett/Orting</td>
<td>Aspen Environmental, Ltd</td>
<td>(800) 716-3377</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graham, WA</td>
<td>Drakk Industries</td>
<td>(253) 302-0014</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kent</td>
<td>Rivers Edge Services</td>
<td>(360) 919-1645</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longview/Portland/Seattle</td>
<td>Accord</td>
<td>(360) 251-8557</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longview/Portland/Seattle</td>
<td>All Out Industrial & Env. Serv.</td>
<td>(360) 419-8655</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Longview/Portland/Aberdeen</td>
<td>Cowitz Clean Sweep</td>
<td>(360) 423-6316</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lynnwood</td>
<td>Environmental Quality Mgmt</td>
<td>(360) 673-2900</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olympia</td>
<td>Focus Environmental Mgmt Group</td>
<td>(800) 601-2398</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portland/Eugene/Vancouver</td>
<td>First Strike Environmental</td>
<td>(360) 447-3556</td>
<td>X X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portland/Kennewick</td>
<td>Oil Re-Refining Company</td>
<td>(360) 367-8884</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Portland/Kennewick/Spokane</td>
<td>Harbor Oil</td>
<td>(360) 285-4548</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puyallup</td>
<td>Pro-Vac</td>
<td>(253) 435-4325</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Renton</td>
<td>Aqua Clean Jet-N-Vac, Inc.</td>
<td>(800) 842-5326</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tacoma</td>
<td>Northwest Cascade</td>
<td>(253) 848-2371</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tacoma</td>
<td>Certified Cleaning Service</td>
<td>(253) 538-5600</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tacoma</td>
<td>Guardian Industrial Services</td>
<td>(253) 536-4545</td>
<td>X w</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tacoma</td>
<td>Emerald Services</td>
<td>(253) 627-8482</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tacoma</td>
<td>PRS Group, Inc.</td>
<td>(253) 383-4175</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seattle</td>
<td>Baker Tanks</td>
<td>(425) 845-6503</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seattle</td>
<td>Ballard Diving & Salvage</td>
<td>(253) 786-6750</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seattle/Tacoma/Vancouver</td>
<td>Emerald Services Inc.</td>
<td>(253) 632-3000</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seattle</td>
<td>Clean Harbors</td>
<td>(360) 444-2424</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seattle/Tacoma/Spokane/Astoria</td>
<td>NRC Environmental Services, Inc.</td>
<td>(360) 337-7455</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seattle</td>
<td>Global Environmental</td>
<td>(253) 623-0821</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seattle</td>
<td>Marine Vacuum Service</td>
<td>(253) 762-0240</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seattle</td>
<td>ONYX Envr. Services</td>
<td>(253) 241-9000</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seattle/Spokane</td>
<td>Pacific Industrial Resources</td>
<td>(253) 767-3867</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seattle/Tacoma/Washougal</td>
<td>Philip Services Corporation</td>
<td>(800) 547-2435</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seattle/Portland</td>
<td>Belfor Environmental</td>
<td>(800) 930-0011</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snohomish</td>
<td>Whiteside Inc</td>
<td>(360) 666-8282</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spokane</td>
<td>Able Clean-up Technologies</td>
<td>(509) 466-5255</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spokane</td>
<td>Big Sky Industrial</td>
<td>(509) 624-4949</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vancouver/Pasco</td>
<td>Tidewater Environmental</td>
<td>(360) 695-8088</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woodinville</td>
<td>CADRE</td>
<td>(425) 883-8007</td>
<td>X X</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

w = PRC: WAC 173-181 Approved Primary Response Contractor (oil) for facilities.

** Organic=sewage, blood, animal waste, etc.

* Small=sediment, motor oil, gas, etc.

Home Heating Oil Tanks - state of Washington - Pollution Liability Insurance Agency 1-800-822-3905 - Insurance Verification (M-F, 8-5)
APPENDIX C

REGIONAL TREATMENT CENTERS
FOR PETROLEUM CONTAMINATED SOILS
The Following is a List of Regional Treatment Centers for Petroleum Contaminated Soil:

<table>
<thead>
<tr>
<th>CRO</th>
<th>Roosevelt</th>
<th>Roosevelt Regional Landfill</th>
<th>1-800-275-5641</th>
<th>Disposal Only</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERO</td>
<td>Spokane</td>
<td>Remtech, Inc.</td>
<td>(509) 624-0210</td>
<td>Thermal Desorption</td>
</tr>
<tr>
<td>NWRO</td>
<td>Everett</td>
<td>Rinker Materials</td>
<td>(425) 355-2111</td>
<td>Soil Remediation</td>
</tr>
<tr>
<td>NWRO</td>
<td>Seattle</td>
<td>Leforge Cement</td>
<td>(206) 937-8025</td>
<td>Cement Incorporation</td>
</tr>
<tr>
<td>SWRO</td>
<td>Tacoma</td>
<td>Petroleum Reclaiming Services</td>
<td>(253)383-4175</td>
<td>Stabilization/Disposal</td>
</tr>
<tr>
<td>SWRO</td>
<td>Port Angeles</td>
<td>Fields Shotwell Corp.</td>
<td>(360) 457-1417</td>
<td>Thermal Treatment/Recycling</td>
</tr>
<tr>
<td>SWRO</td>
<td>Portland OR</td>
<td>Waste Management</td>
<td>(800) 685-8001</td>
<td>Disposal Only</td>
</tr>
<tr>
<td>SWRO</td>
<td>Fife</td>
<td>Fife Sand & Gravel</td>
<td>(253) 922-7710</td>
<td>Bio-Remediation</td>
</tr>
</tbody>
</table>

KEY: CRO: Central Region ERO: Eastern Region NWRO: Northwest Region SWRO: Southwest Region

Washington State Department of Ecology Regional Office 24-Hour Oil Spill/Release Reporting Numbers

![Regional Office Map]

<table>
<thead>
<tr>
<th>WHAT WE NEED TO KNOW</th>
<th>What We Need To Know</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Reporting Party</td>
<td>Reporting Party</td>
</tr>
<tr>
<td>• Contact Phone(s)</td>
<td>Contact Phone(s)</td>
</tr>
<tr>
<td>• Responsible Party</td>
<td>Responsible Party</td>
</tr>
<tr>
<td>• Material Released</td>
<td>Material Released</td>
</tr>
<tr>
<td>• Resource Damages (e.g. dead fish)</td>
<td>Resource Damages (e.g. dead fish)</td>
</tr>
<tr>
<td>• Quantity</td>
<td>Quantity</td>
</tr>
<tr>
<td>• Concentration</td>
<td>Concentration</td>
</tr>
<tr>
<td>• Location</td>
<td>Location</td>
</tr>
<tr>
<td>• Cleanup Status</td>
<td>Cleanup Status</td>
</tr>
</tbody>
</table>

Or call the **Department of Emergency Management 24-hour Number:** 1-800-258-5990

For EPA and US Coast Guard reporting, call the National Response Center: 1-800-424-8802

Idaho: Communications Center (208) 327-7442

Oregon: Emergency Management (503) 378-6377

BC: Provincial Emergency Program (800) 663-3456

EPA Region X, Seattle: (206) 553-1263

January 2010 (revised)
APPENDIX D

NOTICE TO TANK TRUCK DRIVERS
NOTICE TO TANK TRUCK DRIVERS

To prevent the release of substances hazardous to the environment, tank truck drivers entering this site are to comply with the following rules:

1. Inspect tank, fitting, and liquid level indicator prior to filling.
2. Place drip pans under all pump hose fittings prior to loading/unloading.
3. Set the handbrake before starting to load/unload.
4. Plug the drains closest to the delivery truck.
5. Remain within 25 feet of the vehicle while loading/unloading.
6. Maintain an unobstructed view of the cargo tank and load/unload hose.
7. Drain loading/unloading line to storage tank when loading/unloading is complete.
8. Verify that all drain valves are closed before disconnecting loading/unloading lines.
9. Inspect vehicle before departure to be sure all loading/unloading lines have been disconnected and vent valves closed.
10. Unplug the drains closest to the delivery truck.
11. Immediately report any leakage or spillage to the Control Room:

 Extension 3471 or (509) 923-2224 or (509) 923-2150
APPENDIX E

SPCC RULE CROSS-REFERENCE
SPCC Rule Cross-Reference

<table>
<thead>
<tr>
<th>Final SPCC Rule</th>
<th>1973 SPCC Rule</th>
<th>Description of Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>§ 112.7</td>
<td>§ 112.7</td>
<td>General requirements for SPCC plans for all facilities and all oil types.</td>
<td>§ 1 pgs. 1-3, § 2 pgs. 6-12, § 6 pgs. 17-20</td>
</tr>
<tr>
<td>§ 112.7(a)</td>
<td>§ 112.7</td>
<td>General requirements; discussion of facility’s conformance with rule requirements; deviations from Plan requirements; facility characteristics that must be described in the Plan; spill reporting information in the Plan; emergency procedures.</td>
<td>§ 2.6 pgs. 8-12</td>
</tr>
<tr>
<td>§ 112.7(b)</td>
<td>§ 112.7(b)</td>
<td>Fault analysis.</td>
<td>§ 2.6 pgs. 8-12</td>
</tr>
<tr>
<td>§ 112.7(c)</td>
<td>§ 112.7(c)</td>
<td>Secondary containment.</td>
<td>§ 2.6 pgs. 8-12</td>
</tr>
<tr>
<td>§ 112.7(d)</td>
<td>§ 112.7(d)</td>
<td>Contingency plans.</td>
<td>§ 5.0 pgs. 14-16</td>
</tr>
<tr>
<td>§ 112.7(e)</td>
<td>§ 112.7(e)(8)</td>
<td>Inspections, tests, and records.</td>
<td>§ 3.0 pg. 13</td>
</tr>
<tr>
<td>§ 112.7(f)</td>
<td>§ 112.7(e)(10)</td>
<td>Personnel training and discharge prevention procedures.</td>
<td>§ 4.0 pg. 14</td>
</tr>
<tr>
<td>§ 112.7(g)</td>
<td>§ 112.7(e)(9)</td>
<td>Security (excluding oil production facilities).</td>
<td>§ 2.7 pg. 13</td>
</tr>
<tr>
<td>§ 112.7(h)</td>
<td>§ 112.7(e)(4)</td>
<td>Loading/unloading (excluding offshore facilities).</td>
<td>§ 5.4 pg. 15</td>
</tr>
<tr>
<td>§ 112.7(i)</td>
<td>n/a</td>
<td>Brittle fracture evaluation requirements.</td>
<td>n/a</td>
</tr>
<tr>
<td>§ 112.7(j)</td>
<td>§ 112.7(e)</td>
<td>Conformance with State requirements.</td>
<td>§ 5.6 pg. 16</td>
</tr>
<tr>
<td>§ 112.8</td>
<td>§ 112.7(e)(1)</td>
<td>Requirements for onshore facilities (excluding production facilities).</td>
<td>§ 1 pgs. 1-3, § 2 pgs. 6-12, § 6 pgs. 17-20</td>
</tr>
<tr>
<td>§ 112.8(a)</td>
<td>n/a</td>
<td>General and specific requirements.</td>
<td>§ 2.6 pgs. 8-12</td>
</tr>
<tr>
<td>§ 112.10</td>
<td>§ 112.7(e)(1)</td>
<td>Facility drainage.</td>
<td>§ 2.6 pgs. 8-12</td>
</tr>
<tr>
<td>§ 112.11</td>
<td>§ 112.7(e)(2)</td>
<td>Bulk storage containers.</td>
<td>Pgs. 8, 10-12</td>
</tr>
<tr>
<td>§ 112.12</td>
<td>§ 112.7(e)(3)</td>
<td>Facility transfer operations, pumping, and facility process.</td>
<td>§ 3.0 pg. 13</td>
</tr>
<tr>
<td>§ 112.13</td>
<td>§ 112.7(e)(5)</td>
<td>Requirements for onshore production facilities.</td>
<td>n/a</td>
</tr>
<tr>
<td>§ 112.14</td>
<td>§ 112.7(e)(6)</td>
<td>Requirements for onshore oil drilling and workover facilities.</td>
<td>n/a</td>
</tr>
<tr>
<td>§ 112.15</td>
<td>§ 112.7(e)(7)</td>
<td>Requirements for offshore oil drilling, production, or workover facilities.</td>
<td>n/a</td>
</tr>
</tbody>
</table>
APPENDIX F

OIL SPILL RESPONSE MOBILE UNIT – INVENTORY
OIL SPILL RESPONSE MOBILE UNIT - INVENTORY

<table>
<thead>
<tr>
<th>Category</th>
<th>Item Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOOM</td>
<td>1000 ft 4"x 6" Oil Spill Response Containment Boom</td>
</tr>
<tr>
<td>ANCHOR SYSTEM</td>
<td>4 ea Anchor Systems (30 lb anchors, with 10 ft of chain, 150 ft rode & with orange 15.5” buoy)</td>
</tr>
<tr>
<td>BOOM LIGHTS</td>
<td>5 ea Navigational Lights, Self-floating, amber lens, 48” tall; to attach on or near boom (batteries in tool box)</td>
</tr>
<tr>
<td>TOOL BOX</td>
<td>1 ea Heavy-duty poly toolbox, 24” length (contains the below inventory)</td>
</tr>
<tr>
<td></td>
<td>2 ea 8” crescent wrench</td>
</tr>
<tr>
<td></td>
<td>1 ea 8” standard pliers</td>
</tr>
<tr>
<td></td>
<td>1 ea 16 oz. claw hammer</td>
</tr>
<tr>
<td></td>
<td>2 ea 4” C-clamp</td>
</tr>
<tr>
<td></td>
<td>1 ea Flathead screwdriver, small and large</td>
</tr>
<tr>
<td></td>
<td>2 ea 3/8” SPA galvanized shackles, 1/2” SPA galvanized shackles</td>
</tr>
<tr>
<td></td>
<td>1 ea Utility knife with extra blade set</td>
</tr>
<tr>
<td></td>
<td>1 ea Waterproof floatable flashlight with 2 D-cell batteries</td>
</tr>
<tr>
<td></td>
<td>6 sets Hardware set including: 5/16” x 1 1/2” SS bolts, 2 flat washers, nylon nuts</td>
</tr>
<tr>
<td></td>
<td>1 ea Duct Tape, Elec Tape</td>
</tr>
<tr>
<td>PPE BAGS</td>
<td>4 bags PPE Waterproof gear bag (each bag contains the below inventory)</td>
</tr>
<tr>
<td></td>
<td>1 ea Hard hat with ratcheting head band</td>
</tr>
<tr>
<td></td>
<td>1 pr 16” PVC steel toe work boots, size 11, ASTM F2413-05 MI/75 C/75 compliant</td>
</tr>
<tr>
<td></td>
<td>2 pr PVC gloves, 12” gauntlet, size 11</td>
</tr>
<tr>
<td></td>
<td>2 pr Leather work gloves, large size</td>
</tr>
<tr>
<td></td>
<td>2 pr Safety glasses, meeting ANSI and OSHA specifications</td>
</tr>
<tr>
<td></td>
<td>6 pr Ear plugs</td>
</tr>
<tr>
<td></td>
<td>2 pr White Tyvek suit without hood</td>
</tr>
<tr>
<td></td>
<td>1 ea Duct Tape, 1 roll</td>
</tr>
<tr>
<td>DECON STATION</td>
<td>Decontamination Kit Station (contains the below inventory)</td>
</tr>
<tr>
<td></td>
<td>2 ea Poly wash tubs</td>
</tr>
<tr>
<td></td>
<td>1 ea Degreaser detergent for decontamination</td>
</tr>
<tr>
<td></td>
<td>1 bx Nitrile glove liners, large size</td>
</tr>
<tr>
<td></td>
<td>4 ea PVC gloves, 12” gauntlet, size 11</td>
</tr>
<tr>
<td></td>
<td>2 ea Decontamination scrub brushes with long handles</td>
</tr>
<tr>
<td></td>
<td>1 cs Waste bags, 1 case or 100 bags, 33” x 40”, 4 mil</td>
</tr>
<tr>
<td></td>
<td>1 rl Visqueen sheeting, 20’ x 100’, 4 mil</td>
</tr>
<tr>
<td></td>
<td>2 ea Drop tarps, 8’ x 10’</td>
</tr>
<tr>
<td></td>
<td>1 ea 5-gallon plastic bucket</td>
</tr>
<tr>
<td>ABSORBENTS</td>
<td>2 ea Pads, heavy weight adsorbent pads, 1 bag of 100 pads</td>
</tr>
<tr>
<td></td>
<td>2 ea Sweep, 100 feet of 19” heavy weight sweep with nylon web strap</td>
</tr>
<tr>
<td></td>
<td>2 ea Sorbent boom, heavy weight boom containing 4 sections of 5” x 10’</td>
</tr>
<tr>
<td></td>
<td>(each with poly tension line and quick-clips for connecting)</td>
</tr>
<tr>
<td>MISC SUPPLIES</td>
<td>1 ea First aid kit (meets WAC 296-800-15020 for at least 10 people)</td>
</tr>
<tr>
<td></td>
<td>2 ea 5-pound class ABC fire extinguishers</td>
</tr>
</tbody>
</table>

Information book (Spill notification sheet, Job Hazard Analysis, tailgate safety, common MSDS’s, trailer inventory)
Exhibit B

Pre-filing consultation record for the Spill Prevention Control and Countermeasure Plan
Email From Ecology Approving the SPCC as Revised in 2010
From: Irle, Pat (ECY) [mailto:PIRL461@ECY.WA.GOV]
Sent: Monday, August 26, 2013 12:01 PM
To: Lori Morris
Subject: RE: Wells Hydrocombine Dam SPCC Plan DCPUD

The statements that you provided in the first two paragraphs of your email are correct.

Please let me know if you need further assistance.

Sincerely,
Pat Irle
Hydropower Projects Manager
WA Dept of Ecology

From: Lori Morris [mailto:lorim@dcpud.org]
Sent: Tuesday, August 20, 2013 4:26 PM
To: Irle, Pat (ECY)
Subject: Wells Hydrocombine Dam SPCC Plan DCPUD

To: Pat Irle
Washington State Department of Ecology

Good Morning,

To formalize our conversation on August 19, 2013, I discussed the requirement stated in our 401 certification that stipulates “Douglas PUD shall update the Project Spill Prevention Control and Countermeasures Plan (SPCC) pursuant to FERC requirements and recommendations provided by Ecology.”

As we discussed, the Wells Hydrocombine SPCC Plan was recently updated in 2010, with Ecology’s review and found to be satisfactory with no further review necessary until the required update in 2015.

Please let me know by email if this accurate and if not, any changes Ecology would recommend. Once we receive your email we will process this item with NERC.

Thank you,
Lori Morris CUSP
Safety Specialist DCPUD
Email to Aquatic SWG, NMFS, and BIA Requesting a 30 Day Review of the SPCC
Hi Aquatic SWG: please see the email below from Andrew and the attached draft Wells Hydrocombine Dam SPCC Plan. This draft plan is out for review with comments due to Andrew no later than Tuesday, October 1, 2013.

Thanks!
Kristi ☺️

Kristi Geris

ANCHOR QEA, LLC
kgeris@anchorqea.com
T 509.491.3151 x104
C 360.220.3988

Andrew Gingerich

From: Kristi Geris <kgeris@anchorqea.com>
Sent: Monday, August 26, 2013 5:03 PM
To: Keith Hatch (Keith.Hatch@bia.gov); Andrew Gingerich; Bao Le; Beau Patterson; Bill Towey (bill.towey@colvilletribes.com); Bob Jateff (jatefrjj@dfw.wa.gov); Bob Rose; 'Brad James'; 'Bret Nine'; 'Bryan Nordlund (bryan.nordlund@noaa.gov)'; 'Chad Jackson'; Charlie McKinney (cmck461@ecy.wa.gov); Chas Kyger; Chris Sheridan; 'Donella Miller'; Jason McLellan; Jeff Korth (korthjwk@dfw.wa.gov); 'Jessi Gonzales'; Keith Kirkendall (Keith.Kirkendall@noaa.gov); kirk.truscott@colvilletribes.com; Kristi Geris; Mary Mayo; Mike Schiewe; Pat Irle (pirl461@ecy.wa.gov); 'Patrick Luke'; Patrick Verhey (Patrick.Verhey@dfw.wa.gov); Paul Ward (ward@yakama.com); Shane Bickford; 'Steve Lewis'; 'Steve Parker (parker@yakama.com)'
Subject: FW: Wells Hydrocombine Dam SPCC Plan DCPUD
Attachments: 2013_08_26 Douglas - Spill Prevention Control and Countermeasure (SPCC) Plan - Wells Hydroele....pdf

Hi Aquatic SWG: please see the email below from Andrew and the attached draft Wells Hydrocombine Dam SPCC Plan. This draft plan is out for review with comments due to Andrew no later than Tuesday, October 1, 2013.

Thanks!
Kristi ☺️

Kristi Geris

ANCHOR QEA, LLC
kgeris@anchorqea.com
T 509.491.3151 x104
C 360.220.3988

From: Andrew Gingerich [mailto:andrewg@dcpwd.org]
Sent: Monday, August 26, 2013 4:56 PM
To: Kristi Geris
Cc: Pat Irle (pirl461@ecy.wa.gov) (pirl461@ecy.wa.gov); Lori Morris
Subject: FW: Wells Hydrocombine Dam SPCC Plan DCPUD

Kristi, please distribute the attached updated SPCC plan and this email to the ASWG mailing list and Keith with BIA.

Douglas PUD’s 401 Certification requires us to maintain an updated Spill Prevention Control and Countermeasures Plan (SPCC). The SPCC is specifically designed to prevent the spill of oil from the Project and as such maintain an exceptional level of water quality. Douglas PUD works closely with the WA Dept. of Ecology to update this document every five years. Recall, this was an item that was listed on the ASWG’s yearly Action Plan we vetted last Jan and Feb. The most recent version of the SPCC is attached.

When the FERC issued a license for Wells Dam back in November of 2012 they required us to file an updated SPCC with them for review and approval. In addition, to submitting the plan to the FERC we need to provide a comment period to all ASWG agencies, NMFS and BIA. Douglas has already worked with Pat Irle and Ecology towards submitting the updated document with the FERC by the end of Oct. As per normal, in addition to submitting the plan we will provide FERC with a consultation record following the conclusion of a comment period.

Douglas PUD would like to have any additional comment from agencies by Oct 1st.
Any questions can be answered by myself or Lori Morris (Safety Specialist with Douglas PUD). I can be reached at the below contact info and Lori can be reached via email at lorim@dcpud.org or phone 509-881-2243.

Thanks all.

Andrew

Andrew Gingerich
Sr. Aquatic Resource Biologist
Douglas County Public Utility District
1151 Valley Mall Parkway, East Wenatchee, WA 98802
Office Phone: (509) 881-2323
Email: andrewg@dcpud.org
Approval of the SPCC from the Aquatic SWG
Final Meeting
Action Items

Aquatic Settlement Work Group

To: Aquatic SWG Parties

From: Michael Schiewe, Chair (Anchor QEA, LLC)

Date: October 11, 2013

Re: Final Action Items of the October 9, 2013, Aquatic SWG Meeting

Below is a summary of Action Items from the Aquatic SWG meeting that was held in person at Douglas PUD headquarters in East Wenatchee, Washington, on Wednesday, October 9, 2013, from 9:00 a.m. to 12:30 p.m. These action items include the following:

I. Summary of Action Items

1. Kristi Geris will contact Bob Rose and Steve Lewis to bring them up to speed on the details of the Aquatic SWG Extranet site (Item VI-2).
2. Aquatic SWG members will set up their login information to the Aquatic SWG Extranet site as soon as instructions are received via email from Douglas PUD Information Systems (IS) staff (Item VI-2).
3. Andrew Gingerich will develop a draft sturgeon stocking plan proposal, and draft Monitoring and Evaluation (M&E) Plan outline, and provide the drafts to Kristi Geris for distribution to the Aquatic SWG no later than October 31, 2013 (Item IV-5).
4. Mike Schiewe will contact Bob Rose and Steve Lewis to bring them up to speed on the sturgeon discussions (Item VI-5).
5. Chas Kyger will provide the 2013 Adult Pacific Lamprey Passage and Enumeration Study Update that was discussed at the meeting on October 9, 2013, to Kristi Geris for distribution to the Aquatic SWG (Item VI-8).
6. Pat Irle will provide Chris Coffin’s email address to Kristi Geris to add to the Aquatic SWG distribution list (Item VI-9).
7. Patrick Verhey will provide an official letter designating the current WDFW HCP Policy Representation to Kristi Geris for the administrative record (Item VI-10).

II. Summary of Decisions

1. There were no Statements of Agreement (SOAs) approved at today’s meeting.
III. Agreements
 1. The Aquatic SWG members present approved the Spill Prevention Countermeasure Control (SPCC) Plan (Item VI-3).
 2. The Aquatic SWG members present approved the Water Quality Attainment Plan (WQAP) (Item VI-4).

IV. Review Items
 1. There are no items that are currently out for review.

V. Reports Finalized
 1. The final Bull Trout Stranding, Entrapment and Take Study Plan was submitted to the Federal Energy Regulatory Commission (FERC) on September 23, 2013, as distributed to the Aquatic SWG by Kristi Geris that same day.